Psychoneuroimmunology: Mind, brain and body linked to health. Presented by Gretchen Dahl Reeves, PhD, OTL, FAOTA Eastern Michigan University September 21, 2019	
Therapeutic Use of Self & Therapeutic Relationship	

Critical to therapy outcomes

•...the conscious efforts therapists use to enhance interactions with clients and to encourage them to engage in occupations.

• Taylor, et al, 2009; Taylor 2008; 2014

Characteristics of effective communicators

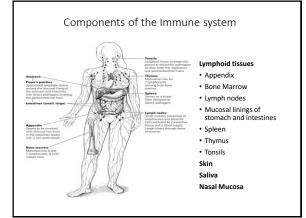
- · Ability to establish rapport
- Open communication
- Empathy
- Respect
- Flexibility in adapting to client needs
- Collaboration
- Helping and caring \rightarrow "connecting"

Л

Illness/injury/disability challenges

- Interruption of daily routines
- Changes in performance of functional tasks
- Economic demands and limitations
- Intrusion in relationships
- Can lead to anxiety, anger, sense of helplessness, pain, fatigue...
- Individual perceptions, responses, coping style to stressors can impact health.

5

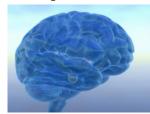

Psychoneuroimmunology

- Concerned with relationships among behavior, neural and endocrine processes and the immune system. (Ader, 2005)
- Bidirectional communication between brain, immune system and psychological state. (Caine, 2003)
- Threats to homeostasis, from external events or invading pathogens are handled by both the CNS and the body.

Affective style

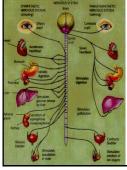
- Personality
- Temperament
- Coping
- Biological or genetic predispositions and life experiences carry underlying physiological differences in reactivity.

7



8

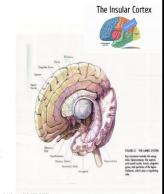
- 4 Major types of immune cells
- B-cells: Lymphocytes, Antibodies
- T-cells: Target specific antigens; cytokines
- Natural Killer (NK) Cells
- macrophages

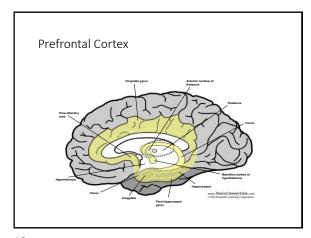

What's the brain got to do with it?

10

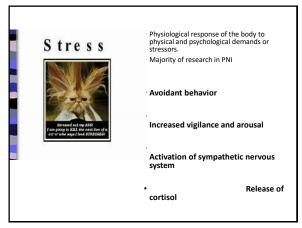
Autonomic Nervous System

Organs of immune system are innervated by both branches of


Immune system signals CNS with cytokines.


Cytokines induce illness-related behaviors via the hypothalamus (reduced appetite, fever, lethargy, increased sleep...).

11


Limbic System

- Amygdala
- Hippocampus
- •Thalamus
- Hypothalamus
- •Septal Area
- Anterior Cingulate Cortex
- Orbitofrontal Cortex
- Insula

13

14

Prolonged Chronic Stress

Stress reduces lymphocyte cytotoxicity and suppresses antibody response

- •Enlarged, hyperactive adrenal cortex
- Reduced thymus, spleen, and lymph structures
- Deep bleeding ulcers

Telomeres

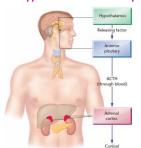
- Noncoding DNA region at ends of chromosomes that protect from deterioration.
- Shorten each time a cell divides; when too short, cell dies.
- Replenished by an enzyme, telomerase.
- Life events and lifestyle can effect telomere length.
- \bullet Aging, chronic stress & cortisol reduce telomerase and telomere length.

16

Brain Changes with Stress

- Hippocampal volume reduced with prolonged stress in PTSD and post-abuse (Bremner, 1999).
- Dendrites wither, similar to effects of aging (McEwen, 2000; Sapolsky, 1996).
- Decreased levels of BDNF.
- Decreased benzodiazepine receptor binding in frontal cortex.

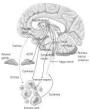
17


Epinephrine (adrenalin) & norepinephrine

- Epinephrine, released from adrenal medulla, acts as an endocrine messenger in the bloodstream and reinforces actions of the sympathetic ns.
- Epinephrine is a key stress hormone.
- Receptors for epinephrine are located on immune system cells
- Norepinephrine is an activator for alertness, vigilance and action.

1	\circ	
п	×	
-	u	

Hypothalamo-Pituitary-Adrenal (HPA) Axis



- HPA axis used to regulate immune responses.
- Cortisol is the second major stress hormone.

19

Immune and Central Nervous System Communication

- Hormones regulated by brain and circulating in bloodstream
- Nerve fibers act on immune tissues
- Substance P (neuropeptide) produced in CNS & PNS moves lymphocytes to areas of inflammation and pain.
- Norepinephrine increases cell receptivity to T-cells
- Hypothalamic receptors for cytokines activate the vagus nerve.

20

Risk factors

- Aging
- Poverty
- Childhood adversity
- Caring for a person in need.
- Mental illness
- Social isolation

What's the mind got to do with it?

- Allergic reactions to non-allergen
- People who are happier have enhanced immune responses through an increase in helper T-cells and natural killer cells
- Med students at exam times show reduced lymphocytes and natural killer cells
- Divorced men more easily stressed; compromised immunity results in more illnesses
- Families with more rigidity and chaos have higher rates of flu

22

Beneficial behaviors

- Attending religious services reduces inflammatory cytokines in aging adults
- Writing about traumatic events increases immune factors.
- Women with breast cancer treated in groups survive longer.
- Med students with more social supports have higher antibody responses
- Exercise increases lymphocytes and natural killer cells.
- Meditation, yoga, Tai-chi.

23

Interventions: mind-body-brain

- Perceived Control
- Distraction/redirecting attention
- Self-soothing
- Social companionship and support networks
- Touch
- Engaging in meaningful occupation(?)

Cautious optimism

- Stress is not the cause of all illnesses.
- Reducing stress or thinking happy thoughts not a cure.
- Understanding that the course of a health concern can be impacted in positive ways by our therapeutic relationships is fundamental to best practice.

25

References

- Caine, R. (2003). Psychological influences in critical care: Perspectives from psychoneuroimmunology. *Critical Care Nursing*, 23. 60-70.
- Cascio, C., Moore, D., & McGlone, F. (2019). Social touch and human development. Developmental Cognitive Neuroscience, 35, 5-11.
- Croy, I., et al. (2019). Gentle touch perception: From early childhood to adolescence. Developmental Cognitive Neuroscience, 35, 81-86. Danese, A. (2018). Developmental psychoneuroimmunology grows up. Brain, Behavior and Immunity. 70, 8-9.
- Lugendorf, S. & Costanzo, E. (2003). Psychoneuroimmunolgy and health psychology: an integrative model. Brain, Behavior and Immunity. 17, 225-232.
- McGlone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and affective touch: Sensing and feeling. *Neuron*, 82. 737-756.
- Priebe, S. Et al. (2019). What clinicians do to improve outcomes across psychiatric treatments: A conceptual review of non-specific components. *Epidemiology and Psychiatric Sciences*, 1-8.
- Sapolsky, R. (2004). Why zebras don't get ulcers. New York: Henry Holt and Co. https://www.youtube.com/watch?v=eYGOZuTv5rs
- Song, S. et al. (2012) Psychological and physical wellness in older adults from the patient perspective. Science Research, 4, 80-87.

- Taylor, R., et al. (2009). The rapeutic use of self: A nationwide survey of practitioners' attitudes and experiences. American Journal of Occupational . Therapy, 63, 198-207.
- Taylor, R. (2008). The intentional relationship: Occupational therapy and the use of self. Philadelphia: F.A. Davis.
- Taylor, R. (2014). Therapeutic relationship and client collaboration. In Schell, B., Gillen, G, and Scaffa, M. (eds). Willard and Spackman's Occupational Therapy. Pp. 425-436. New York: Lippinncott, Williams & Wilkins.
- Taylor, S.E. (2002) . The tending instinct. New York: Henry Holt and Co.
- Vedhara, K. and Irwin, M. (Eds). (2005). Human psychoneuroimmunology. New York: Oxford University Press.
- Webber, M. (2010). Psychoneuroimmunology outcomes and quality of life. Transfusion and Aphoresis Science, 42, 157-161.
- Whittaker, A. (2018). Does chronic caregiving stress accelerate T cell immunosenescene? Brain, Behavior and Immunity. 73, 155-156.